MARE ISLAND NAVAL SHIPYARD INDUSTRIAL WASTE DISCHARGE INVESTIGATION REPORT DATE OF INVESTIGATION: Wednesday, 28 January, 1987 - I. INSPECTORS: Greg Ow, Harris & Associates - II. SITE LOCATION: Bldg. 225, 5th Street, nr. waterfront Shop 51, Plating Strip III. CONTACTS: Mr. Max Henderson Electroplating Foreman (707) 646-2108 Mr. Fernando Rodriquez Chemist (707) 646-3405 IV. GENERAL DESCRIPTION OF FACILITY: Metal electroplating shop consisting of a metal cleaning area, silver plating, cadmium plating, chrome plating, nickel plating and copper plating. Use of once through continuous flow rinsewater tanks. V. CHEMICALS STORED ONSITE: PRODUCT NAME EST. QUANT. CHEMICAL CONTENTS VI. PROCESS CHEMICALS AND WASTESTREAMS: | <u>DESCRIPTION</u> | CHEMICALS | DISCHARGE QUANTITY | |--|-------------------------------|---------------------------| | A) Cleaning Room 1. Paint Strip Tank EZE-Stripper | 500 gal
75% Dichloromethan | dump 1/year
e | | 2. Rinsewater Tank | ~1000 gal | continuous overflow | | 3. Heated NaOH Tank | 1335 gal
(11b/gal) 200°F | dump 1/month | | DESCRIPTION / | <u>CHEMICALS</u> | DISCHARGE QUANTITY | |--------------------------------|---|--| | 4. Nickel Strip Tank | 335 gal
Sulfuric Acid (10%
Copper Sulfate (40 | dump 1/5 yrs
6)
lb) | | 5. Chrome Strip Tank | 655 gal
NaOH | dump 1/year-1/5 yrs | | 6. Rinsewater Tank | ~1000 gal | continuous overflow | | 7. Rinsewater/Bright
Tank | ~1000 gal rinse-
water | continuous overflow | | | 100 gal bright dip
Nitric Acide 50%
Sulfuric Acide 50% | • | | 8. Spare Tank (Unused) | | | | 9. Heated Rinse Tank | ~1000 gal | continuous overflow | | 10. Cyanide Cleaner
Tank | | dump 1/5 yrs | | 11. Rust Scale Cleaner
Tank | HCI Acid | dump 1/month | | B) Silver Room | | | | 12. Electro Cleaner
Tank | 915 gal
CEE-BEE Formula
No. 17 | dump once/month | | 13. Rinse Tank | ~1000 gal | continuous overflow | | 14. Heated Rinse Tank | ~1000 gal | continuous overflow | | 15. Bright Nickel
Tank | 360 gal Nickel Sulfate 300 g/l Nickel Chloride 100 g/l Boric Acid 45 g/l Udylite: Brightener #4 1% Brightener #63 3% Magnum S 25% | not dumped
residuals in rinse-
water tanks | | 16. Nickel Strike | 190 gal
Nickel Chloride
235 g/l | not dumped, residuals in rinsewater | | DESCRIPTION | CHEMICALS | DISCHARGE QUANTITY | |--|--|--| | | Hydrochloric Acid
125 ml/l | | | 17. Silver Cyanide
Tank | 440 gal Silver 30 g/l Silver Cyanide 140 #/tk Potassium Cyanide 40 g/l Potassium Corbona 15-150 g/l | • | | 18. Silver Cyanide
Strike Tank | 230 gal
Silver Cyanide
5 g/l
Potassium Cyandie
30 g/l | not dumped, residuals
in rinsewater | | 19. Copper Cyanide
Tank | 600 gal Copper Cyanide 75 g/l Free Sodium Cyanide 40 g/l Potassium Hydroxid 40 g/l Total Sodium Cyanid | ie | | 20. Rinse Tank | ~ 800 gal | continuous overflow | | 21. Dull Nickel Tank (to be moved to Cadmium Room) | 65 gal
Nickel Sulfate
300 g/l
Nickel Chloride
125 g/l
Boric Acid 35 g/l | not dumped, residual
in rinsewater | | 22. Tin Tank (to be moved to Cadmium Room) | 65 gal Sodium Stannate 115 g/l Sodium Hydroxide 12 g/l | not dumped, residual
in rinsewater | | 23. Lead Tank | Lead Flouroborate | | | C. Cadmium Room | | | | 24. Heated Rinsewater
Tank | ~ 500 gal | continuous overflow | | DESCRIPTION | CHEMICALS | , DISCHARGE QUANTITY | |--------------------------------------|--|---| | 25. Rinse Tank | ~ 500 gal | continuous overflow | | 26. HCI Tank | 245 gal
50% HCI | dumped 3/year | | 27. NaOH Tank
(Heated) | | (Same as Tank No. 3) | | 28. S.S. Passivating | 425 gal
Nitric Acid | dumped 1/year | | 29. Cadmium Tank | 600 gal Total Sodium Cyanide 100 g/l Sodium Hydroxide 15 g/l Sodium Carbonate 40 g/l | not dumped, residuals
in rinsewaters | | 30. Rinse/Nitric
Bright Tank | ~ 500 gal Rinse-
water
100 gal
Nitric Acid 50%
Sulfuric Acid 50% | continous overflow dumped 1/month | | 31. Paint Strip Tank
EZE Stripper | ~ 50 gal
75% Dichloromethan | dumped 1/year
e | | 32. Chromate Conversion Tank | 100 gal OXYCHRO 754 15 g/ldumped 1/year (sodium dichromate) | | | 33. Rinse Tank | ~ 100 gal | | | D. Chrome Room | | | | 34. Spare Tank Site | | | | 35. Chromic Acid Tank | 920 gal
Chromic Acid
250 g/l
Sulfuric Acid
1.3 ml/l
Barium Carbonate | not dumped, residual
to rinsewater | | 36. Chrome Strip Tank | 655 gal
Sodium Hydroxide | dumped 1/year | | 37. Degreasing Tank | ~ 500 gal | | | | | | | DESCRIPTION | CHEMICALS | DISCHARGE QUANTITY | |-----------------------|---|--| | 38. Chromic Acid Tank | 920 gal
(as 35 above) | not dumped, residual
to rinsewater | | 39. Chromic Acid Tank | 1275 gal
(as 35 above) | not dumped, residual
to rinsewater | | 40. Anodizing Tank | 125 gal Chromic Acid 75 g/l Sulfuric Acid .3 g/l Sodium Chloride .2 g/l | not dumped, residuals
in rinsewater | | 41. Heated Rinse Tank | ~ 100 gal | | | 42. & 43 NOT USED | | | | 44. Chrome Room Air | | Overflows to I.W. | VII. COMMENTS: Scrubber Water Recirculation Tank 45. Cadium/Silver Rooms Make up Tank Air Scrubber Water Tanks in the Silver Room have been modified with new PVC piping. continuous make up water. Return of re- circulation is unknown The air scrubbers have not been maintained. The lack of recirculation water to one of the scrubbers indicates potential problems. Ultimately, the water may add a dilution factor to the industrial waste sent to the I.W. system. ## VIII. PRETREATMENT CATEGORY DESIGNATION: Electroplating and metal finishing. ## IX. INDUSTRIAL WASTE MANHOLE DISCHARGED TO: Design calls for cyanide waste to flow to IWTP-T-1 for pretreatment destruction at the site. Discharge to MH B-2-2. Acid waste to flow directly to MH B-2-1 and all waste combined to flow to IWPS-2. 5